New detector perfect for asteroid mining

Concept of an asteroid redirect mission (NASA)
Concept of an asteroid redirect mission (NASA)
The grizzled asteroid miner is a stock character in science fiction. Now, a couple of recent events – one legal and the other technological – have brought asteroid mining a step closer to reality.

The legal step was taken when the Senate Commerce, Science and Transportation Committee passed a bill titled H.R. 2262—SPACE Act of 2015. The bill has a number of measures designed to facilitate commercial space development, including a provision that gives individuals or companies ownership of any material that they mine in outer space. According to one estimate, asteroid mining could ultimately develop into a trillion-dollar market.

The technological development is a new generation of gamma-ray spectroscope that appears perfectly suited for detecting veins of gold, platinum, rare earths and other valuable material hidden within the asteroids, moons and other airless objects floating around the solar system – just the type of “sensor” that will be needed by asteroid miners to sniff out these valuable materials.

The concept was developed by a team of scientists from Vanderbilt and Fisk Universities, NASA’s Jet Propulsion Laboratory and the Planetary Science Institute. It is described in the article “New ultra-bright scintillators for planetary gamma-ray spectroscopy”published Oct. 23 in the SPIE Newsroom. SPIE is the International Society for Optics and Photonics and the SPIE Newsroom highlights noteworthy scientific achievements in the area of optics and photonics.

Penetrating gamma radiation identifies rock-forming elements

Planetary gamma-ray spectroscopy takes advantage of the fact that all of the objects in the solar system are continually bombarded by cosmic rays. These high-energy particles from deep space strike the exposed surfaces at relativistic velocities, smashing apart atoms in the top layers and producing a secondary shower of particles, including neutrons. The neutrons then collide repeatedly with the atoms in the material, producing gamma rays as they go. Gamma rays are a form of electromagnetic radiation like light, but they are considerably more powerful and penetrating. The decay of long-lived radioactive elements is a secondary source of gamma rays.

A gamma-ray spectroscope records the intensity and wavelengths of the gamma rays coming from a surface. This spectrum can be analyzed to determine the concentration of a number of important, rock-forming elements, including oxygen, magnesium, silicon and iron…not to mention precious metals like gold and valuable crystals like diamonds.

“Space missions to the Moon, Mars, Mercury and the asteroid Vesta among others have included low-resolution spectrometers, but it has taken months of observation time and great expense to map their elemental surface compositions from orbit,” said Professor of Astronomy Keivan Stassun, the Vanderbilt co-author. “With our proposed system it should be possible to measure sub-surface elemental abundances accurately, and to do it much more cheaply because our sensors weigh less and require less power to operate. That is good news for commercial ventures where cost, power and launch weight are all at a premium.”

Transparent crystal detects gamma rays

The key to the new instrument is a recently discovered material, europium-doped strontium iodide (SrI2). This is a transparent crystal that can act as an extremely efficient gamma-ray detector. It registers the passage of gamma rays by giving off flashes of light that can be detected and recorded.

Read more: New detector perfect for asteroid mining

 

 

See Also

The Latest on: Asteroid mining

[google_news title=”” keyword=”asteroid mining” num_posts=”10″ blurb_length=”0″ show_thumb=”left”]

via Google News

 

The Latest on: Asteroid mining
    Feed has no items.

via  Bing News

 

What's Your Reaction?
Don't Like it!
0
I Like it!
0
Scroll To Top